DOI: http://dx.doi.org/10.18782/2320-7051.7698

ISSN: 2582 – 2845 Ind. J. Pure App. Biosci. (2019) 7(5), 279-286 Research Article

Pathogenic Variability of Soybean Charcoal Rot Caused Macrophomina phaseolina Isolates against Pulse Crops

Ashwini Kumar¹, M. Surya Prakash Reddy^{2*}, Anupam Srivastava³ and Varma R. K.⁴

^{2, 3,4}Department of Plant Pathology, JNKVV, Jabalpur-M.P-482004 ¹Department of Plant Pathology, B.M College of Agriculture, RVSKVV, Khandwa, M.P.

*Corresponding Author E-mail: suryapath017@gmail.com Received: 12.07.2019 | Revised: 23.08.2019 | Accepted: 28.08.2019

ABSTRACT

Macrophomina phaseolina is the most devastating, emerging and root killer pathogen which causes charcoal rot and root rot diseases in various economically important crops. Macrophomina phaseolina 16 isolates of soybean collected from various districts of Madhya Pradesh state. Pathogenic variability among the 16 isolates of Macrophomina phaseolina to test line of susceptible varieties of different host crops as soybean, chick pea, mungbean, urdbean and cowpea, were used to check wide range host. The parameters can be observed from experiment Root Index, Mortality, Root Mortality Per unit, Avirulent Virulent, higly Virulent. To avoid crop rotations of soy bean with any pulse crop for future.

Keywords: Soybean isolates, Macrophomina phaseolina, Pathogenic Variability

INTRODUCTION

Macrophomina phaseolina, the causal agent of charcoal rot is a soil and seed-borne polyphagous pathogen. It causes diseases of more than 500 crop and non-crop species, including economically important hosts such as soybean, common bean, corn, sorghum, cowpea, peanut and cotton Dhingra and Sinclair (1977), Ndiaye et al. (2010). The fungus has a worldwide distribution, but is regarded as economically more important in subtropical and tropical countries with semiarid climates (Wrather, et al., 1997, Wrather, et al., 2001). Macrophomina phaseolina induces diseases on a range of crops, ranging from seedling blight, root and stem rot, wilt, and pre- to post-emergent damping off, which

result in decreased stem height, girth, root and head weight, or death, of affected plants. The abundant production of minute black sclerotia of the fungus cause the rotted tissues to become blackened, and for this reason the various diseases are known as charcoal rot. Different isolates of R. bataticola obtained from different plant species, and plant parts of the same host showed variability Prameela and Singh, (1998) Meena et al. (2006). Sixty four isolates of *M. phaseolina* from sunflower Manici et al. (1992) and cotton Monga et al. (2004) fell into 3 groups viz., highly virulent, virulent and poorly virulent, of pathogenic variability. In India 70 percent loss cause by charcoal rot has been reported.

Cite this article: Kumar, A., Reddy, M.S.P., Srivastava, A., & Varma, R. K. (2019). Pathogenic Variability of Soybean Charcoal Rot Caused *Macrophomina phaseolina* Isolates against Pulse Crops, *Ind. J. Pure App. Biosci.* 7(5), 279-286. doi: http://dx.doi.org/10.18782/2320-7051.7698

Kumar et al.

Ind. J. Pure App. Biosci. (2019) 7(5), 279-286

ISSN: 2582 – 2845

The disease is distributed in Madhya Pradesh, Maharashtra, Rajasthan and Delhi. The important host is soybean, sunflower, safflower sesame, sorghum, rice, green-gram, black-gram, cowpea, pigeon-pea and potato. In M.P. the crop sequence gram - soybean and dry spell during pod filling have played major role in enhancing the incidence of charcoal rot of soybean caused by Macrophomina phaseolina. Therefore the present investigation is under taken with the following.

MATERIALS AND METHODS

Seeds

Seeds of different crops were used for study. Seed of soybean cultivar JS 95-60, Chickpea (JG 212) which were obtained from All India Co-ordinated Research Project on soybean, mungbean (Ganga-8), and urid bean (T-9) from Agronomy Department. Cowpea (Mayur) from Horticulture Department College of Agriculture Jabalpur. Seeds were sterilized in 0.1% of HgCl₂ solution for 2 minute followed by three changes in sterilized distilled water to remove trace of HgCl₂

Seed germination test paper

Seed germination test paper. (45X30 cm) were purchased from Ajay Kumar and Sons, New Delhi.

Test pathogen

Macrophomina phaseolina (Rhizoctonia bataticola) the causal organism of charcoal rot of soybean.

District	Locality of collocation of isolates	Designation of isolates of Macrophomina phaseolina	
Jabalpur	Adhartal	I ₁	
Vidisha (Ganjbasoda)	K.V.K	I ₂	
	Farmer field	I_3	
Narsingpur	K.V.K	I_4	
Sagar	K.V.K	I ₅	
	Farmer field	I_6	
Narsingpur	Farmer field	I ₇	
Jabalpur	Farmer field	I ₈	
Narsinghpur	Farmer field	I ₉	
(Gadarwara)			
Jabalpur	Khamariya	I ₁₀	
	Krishi Nagar Farm	I ₁₁	
	Krishi Nagar Farm	I_{12}	
Indore	K.V.K.	I ₁₃	
Sagar (Garhakota)	Farmer field	I ₁₄	
Rewa	K.V.K	I ₁₅	
Tikamgarh	K.V.K	I ₁₆	

Disease samples of soybean collected from various districts of Madhya Pradesh state.

Pathogenic variability Pathogenicity test

Blotter paper technique as described by Nene et al. (1981), for *Rhizoctonia bataticola*. *(Macrophomina phaseolina)*.To conduct the pathogenicity test of soybean (JS 95- 60), chick pea (JG 212), mungbean (Ganga-8), urdbean (T-9), and cowpea (Mayur), 20 surface sterilized (35 second in 2.5% sodium

Copyright © Sept.-Oct., 2019; IJPAB

hypo-chloride) seeds of the test lines in autoclaved riverbed sand placed in 15-cm pots. Approximately 1 kg of sand will be required for one pot. Nurse the seedlings till these are 5 days old from Prepare potato-dextrose broth. Place 100 ml broth in one 250-ml flask and prepare as many flasks as needed. Autoclave at 15 Ib for 20 min. For testing ten lines at one time one

Kumar et al.Ind. J. Pure App. Biosci.	(2019) 7(5), 279-286 ISSN: 2582 – 2845
flask of inoculum will be needed.	green tops of the seedlings remain outside
Inoculate the medium with the fungus.	the blotter paper after it is folded. Fold the
Incubate for 5 days at 25°C. Remove the	blotter paper and moisten it adequately but
mycelial mats from the flasks at the end of	not excessively. One folded blotter paper
the incubation period. Add two mycelial	will have seedlings of one test line.
mats to 100 ml sterilized distilled water	Inoculate seedlings of a susceptible check
and macerate these in a Warming blender	with each batch of test seedlings. Keep
for 1 min (operate the blender	folded blotters, one on top of the other, in
intermittently). Place this inoculum in a	heaps of ten in a tray. One of these ten
beaker of a suitable size. Uproot the 5-	blotters should have the seedlings of the
day-old seedlings of the test lines (step 2).	susceptible check. Place the trays in an
Wash the root system in running water	incubator at 35°C for 8 days. Provide 12-
and rinse in sterilized distilled water. Hold	hr artificial light. Moisten the blotters
all seedlings of a test line in a hand and	adequately every day. At the end of the
dip the roots of these in the inoculum with	incubation period (8 days), examine the
an up and down movement for about 30	seedlings for the extent of root damage,
seconds. Remove excess inoculum by	and score for the disease. The fungus
touching the edge of the beaker. Place 20	survives on infected plant debris and is
seedlings of the test line side by side on a	also transmitted through seed. The disease
blotter paper (size 45 cm X 25 cm with	spreads rapidly under cool, wet, and
one fold; any collar; thin) so that only the	windy conditions.
cotyledons and roots are covered and the	Root mortality (%) per unit:
-	

Charcoal rot root mortality (%) per unit was calculated by the following formula.

Mortality (%) Root index (%)

Percent category of charcoal rot of soybean				
S. No.	Category	Charcoal rot %		
1	Avirulent	<10		
2	Virulent	10-50		
3	Highly virulent	>50		

Percent category of charcoal rot of soybean

RESULTS AND DISCUSSION

Table 1: Reaction of sixteen isolates of Macrophomina phaseolina causing charcoal rot of soybean, against soybean JS 95-60.

Isolate No.	Root Index (%)	Mortality (%)	Root Mortality % Per unit	Category
1	50.0	94.1	1.9	HV
2	48.4	100	2.1	HV
3	62.9	100	1.6	HV
4	58.8	94.4	1.6	HV
5	26.6	77.7	2.9	HV
6	24.1	82.3	3.4	HV
7	43.6	94.4	2.2	HV
8	45.2	88.2	2.0	HV
9	60.6	100	1.7	HV
10	52.9	94.1	1.8	HV
11	39.4	100	2.5	HV
12	47.6	88.2	1.9	HV
13	34.1	82.3	2.4	HV
14	45.0	81.2	1.8	HV
15	44.4	94.4	2.1	HV
16	40.0	100	2.5	HV

Isolate No.	Root Index (%)	Mortality	Root Mortality % Per	Category
		(%)	unit	of pathogen
1	13.6	90.9	6.7	HV
2	38.5	100	2.6	HV
3	26.9	92.3	3.4	HV
4	18.5	92.8	5.0	HV
5	32.8	92.8	2.8	HV
6	34.4	100	2.9	HV
7	06.6	58.3	8.8	HV
8	10.0	61.5	6.2	HV
9	05.9	76.9	8.3	HV
10	27.6	100	3.6	HV
11	05.9	69.2	9.5	HV
12	16.4	100	6.1	HV
13	25.3	80	3.2	HV
14	05.5	66.6	6.2	HV
15	16.3	72.7	4.5	HV
16	26.8	87.5	3.3	HV

 Table 3: Reaction of sixteen isolates of Macrophomina phaseolina causing charcoal rot of soybean, against mung bean Ganga – 8
 causing charcoal rot of soybean, against mung bean Ganga – 8

Isolate	Root Index (%)	Mortality	Root Mortality % Per	Category
No.		(%)	unit	of pathogen
1	11.2	55.0	4.9	HV
2	13.0	60.0	5.0	HV
3	19.2	63.1	3.2	HV
4	5.6	55.5	9.9	HV
5	12.7	52.3	4.1	HV
6	15.8	84.2	5.3	HV
7	13.5	65.0	4.8	HV
8	5.9	55.0	9.3	HV
9	17.8	63.1	3.5	HV
10	9.0	68.7	7.6	HV
11	7.4	55.5	7.5	HV
12	15.5	55.5	3.5	HV
13	7,3	50.0	6.8	V
14	14.4	50.0	3.4	V
15	13.9	61.9	4.4	HV
16	7.3	38.0	5.2	V

 Table 4: Reaction of sixteen isolates of Macrophomina phaseolina causing charcoal rot of soybean, against urdbean T-9

Isolate No.	Root Index	Mortality	Root Mortality % Per	Category
	(%)	(%)	unit	of pathogen
1	24.8	44.0	1.7	V
2	17.6	52.6	2.9	HV
3	14.0	40.9	2.9	V
4	13.5	42.8	3.1	V
5	8.1	36.8	4.5	V
6	4.5	35.0	7.7	V
7	19.7	42.1	2.1	V
8	6.7	30.0	4.4	V
9	15.2	47.6	3.1	V
10	9.1	42.8	4.7	V
11	14.0	40.9	2.9	V
12	18.0	43.4	2.4	V
13	11.1	41.1	3.7	V
14	11.6	47.0	4.0	V
15	8.9	43.4	4.8	V
16	8.0	40.0	5.0	V

Kumar et al.Ind. J. Pure App. Biosci. (2019) 7(5), 279-286ISSN: 2582 - 2845Table 5: Reaction of sixteen isolates of Macrophomina phaseolina causing charcoal rot of soybean, against

against cowpea Mayur					
Isolate No.	Root Index (%)	Mortality	Root Mortality % Per unit	Category	
		(%)		of pathogen	
1	6.4	35.2	5.5	V	
2	18.8	61.1	3.3	HV	
3	14.3	60.0	4.2	HV	
4	6.8	68.7	10.1	HV	
5	7.3	53.3	7.3	HV	
6	8.0	44.4	5.6	V	
7	16.5	68.7	4.2	HV	
8	16.5	78.5	4.8	HV	
9	6.5	56.2	8.6	HV	
10	10.6	56.2	5.3	HV	
11	9.5	56.2	5.9	HV	
12	11.0	50.0	4.5	V	
13	12.6	52.9	4.2	V	
14	7.0	47.0	6.7	V	
15	7.1	43.7	6.2	V	
16	6.5	43.7	6.7	V	

Table 6: Categorization of Macrophomina phaseolina on the basis of virulence

Isolates No.	Soybean	Chickpea	Mungbean	Urdbean	cowpea
1.	HV	HV	HV	V	V
2.	HV	HV	HV	HV	HV
3.	HV	HV	HV	V	HV
4.	HV	HV	HV	V	HV
5.	HV	HV	HV	V	HV
6.	HV	HV	HV	V	V
7.	HV	HV	HV	V	HV
8.	HV	HV	HV	V	HV
9.	HV	HV	HV	V	HV
10.	HV	HV	HV	V	HV
11.	HV	HV	HV	V	HV
12.	HV	HV	HV	V	V
13.	HV	HV	V	V	V
14.	HV	HV	V	V	V
15.	HV	HV	HV	V	V
16.	HV	HV	V	V	V

Reaction of different soybean isolates of *Macrophomina phaseolina* causing Charcol rot of soybean, against soybean JS 95 – 60 (Table 1).

Data presented in **Table 1** clearly indicated that Root index (%) ranged from 24.1 to 62.9 %. The minimum root index (24.1%) was recorded in isolates I_6 (Sagar, Farmer field) and I_5 (Sagar, KVK) with 26.6 per cent. Maximum and above 50 per cent Root index (%) was observed in 5 isolates i.e. I_3 (Ganjbasoda, Farmer field), I_9 (Gadarwada, Farmer field), I_4 (Narsinghpur, KVK), I_{10} (Jabalpur, Khamariya) and I_1 (Jabalpur, Adhartal).Observation on mortality percentage it was recorded that it ranged from 77.7 to 100.0 per cent. All the 16 isolates were found to cause mortality more than 77.7%.Cent Per cent mortality was recorded in isolates I_2 (Gangbasoda, KVK), I_3 (Gangbasoda, Farmer field) I_9 (Gadarwada, Farmer field), I_{11} (Jabalpur, Krishi nagar farm) and I_{16} (Tikamgrah, KVK).Data observed on mortality per unit showed the range of 1.6 to 3.4. Maximum mortality per unit of 3.4 and 2.9 was recorded in isolates I_6 (Sagar, Farmer field) and I_5 (Sagar, KVK) respectively. All the 16 isolates had shown highly virulent (HV) reaction to soybean c.v. JS 95-60.

Copyright © Sept.-Oct., 2019; IJPAB

Kumar et al.Ind. J. Pure App. IReactionofsixteenisolatesofMacrophominaphaseolina,causingCharcoal rot of soybean, against chickpeaJG 212(Table 2).

The data presented in Table 2 exhibited that root index percentage of chickpea inoculated with 16 isolates ranged from 6.6 to 38.5%. Minimum Root index (%) of 6.6 and 7.3 per cent was recorded in I₇ (Narsinghpur, Farmer field) and I₁₁ (Jabalpur, Krishi nagar farm) respectively. Maximum of 38.5, 34.4 and 32.8 was observed in I_2 (Ganjbasoda, KVK), I_6 (Sagar, Farmer field) and I₅ (Sagar, KVK) respectively. Other isolates had root index (%) were between 10.0 to 27.6 per cent. Per cent mortality ranged from 58.3 to 100.0 per cent four isolates i.e. I₂ (Ganjbasoda, KVK), I₆ (Sagar, Farmer field), I_{10} (Jabalpur, Khamariya) and I₁₂ (Jabalpur, Krishi nagar farm) had 100% mortality, out of 16 only one isolates I₇ (Narsinghpur, Farmer field) has mortality less than 60 per cent. Data calculated for causing seedling mortality per unit root index showed variation from 2.6 to 9.5. Isolates I₂ (Ganjbasoda, KVK), I₅ (Sagar, KVK) and I₆ (Sagar, Farmer field) had minimum mortality per unit i.e. 2.6, 2.8 and 2.9. Three isolates I_{11} (Jabalpur, Krishi nagar farm), I₇ (Narsinghpur, Farmer field) and I₉ (Gadarwada, Farmer field) had shown maximum mortality per unit of 9.5, 8.8 and 8.3 respectively. All the 16 isolates had shown highly virulent (HV) reaction to chickpea C.V. JG 212 under the investigation.

ReactionofsixteenisolatesofMacrophominaphaseolina,causingCharcoal rot of soybean, against mungbeanGanga – 8(Table 3).

Data on reaction of 16 isolates on mungbean **Table 3** showed that root index per cent varied from 5.6 to 19.2 per cent. Minimum of 5.6 percent and 5.9 per cent was recorded in I₄ (Narsinghpur, KVK) and I₈ (Jabalpur, Farmer field) respectively. Highest of 19.2 per cent was recorded in I₃ (Ganjbasoda, Farmer field) followed by 17.8 in I₉ (Gadarwada, Farmer field). Other isolates ranged between 8.0 to 15.8.Observation on per cent seedling mortality ranged from 38.0 to 84.2 per cent. Out of 16 only 3 isolates I₁₃ (Indore, KVK), I₁₄ (Garakhota, Farmer field) and I₁₆ (Tikamgarh, KVK) could cause seedling mortality below 50 per cent. Other isolates had more than 50 per cent but none of them caused 100 per cent mortality. Mortality per unit area ranged from 3.3 to 9.9 per cent. Maximum mortality per unit of 9.9 and 9.3 was recorded in I_4 (Narsinghpur, KVK) and I₈ (Jabalpur, Farmer field) respectively. Minimum of 3.3 was noted in I₃ (Ganjbasoda, Farmer field) followed by 3.5 in I_9 (Gadarwada, Farmer field) and I_{14} (Garakhota, Farmer field).Out of 16, 13 isolates were designated as highly virulent (HV) 3 as virulent (V) none of them were found in avirulent category.

Reaction of sixteen isolates of *Macrophomina phaseolina* causing Charcoal rot of soybean, against urdbean T-9 (Table 4).

The data exhibited in Table 4 showed wide variation among 16 isolates as for as the root index per cent was concerned. It varied from 4.5 to 24.8 per cent. Minimum root index per cent of 4.5 and 6.7 per cent was noted in I_6 (Sagar, Farmer field) and I₈ (Jabalpur, Farmer field) whereas 24.8 per cent was recorded in I_1 (Jabalpur, Adhartal) followed by 19.7 in I_7 (Narsinghpur, Farmer field).Range of per cent seedling mortality was quite narrow and between 30.0 to 52.6. Maximum mortality of 52.6 and 47.6 per cent was noted is I_2 (Ganjbasoda, KVK) and I₉ (Gadarwada, Farmer field) respectively. Mortality more than 60 per cent was not recorded in any of the isolates.Mortality per unit varied between 1.8 to 7.8. Highest mortality per unit of 7.8 was observed in I₆ (Sagar, Farmer field) followed by 5.0 is I₁₆ (Tikamgarh, KVK).Data clearly indicated that only one isolate I₂ (Ganjbasoda, KVK) fell in highly virulent category and rest of the 15 isolates in virulent category. None of the isolate was fell in avirulent category.

Reaction of sixteen isolates of *Macrophomina phaseolina* causing Charcoal rot of soybean, against cowpea Mayur (Table 5).

Data recorded in **Table 5** on reaction of 16 isolates on cowpea indicated that root index

Kumar et al.

percentage varied from 6.4 to 18.8%. Minimum root index (%) of 6.4 and 6.5 was recorded in I_1 (Jabalpur, Adhartal) and I_9 (Gadarwara, Farmer field). Maximum of 18.8 per cent was observed in I2 (Ganjbasoda, KVK) followed by 16.5 per cent by isolate I_8 (Jabalpur, Farmer field).Seedling mortality ranged from 35.2 per cent I_1 (Jabalpur, Adhartal) to 78.5 per cent I₈ (Jabalpur Farmer field).Only four isolates i.e. I₂ (Ganjbasoda, KVK), I₄ (Narsingpur, KVK), I₇ (Narsingpur, Farmer field) and I₈ (Jabalpur, Farmer field) caused mortality more than 60 per cent. Data on mortality per unit varied from 3.3 to 10.1 per cent. Minimum of 3.3 per cent mortality per unit was recorded in I₂ (Ganjbasoda, KVK) followed by 4.2 per cent by I₂ (Ganjbasoda, KVK), I₇ (Narsingpur, Farmer field) and I_{13} (Indore, KVK). Highest mortality per unit was recorded in isolate I₄ (Narsingpur, KVK) followed by 8.6 by I₉ (Gadarwara, Farmer field). Reaction of 16 isolates based on seedling mortality showed 9 isolate as highly virulent, 7 as virulent. None of the isolates had shown avirulent reaction in cowpea.

Saleh et al. (2010), evaluated the degree of populations of *M. phaseolina* by comparing 143 isolates from maize, sorghum, soybean fields and from eight plant species of tall grass prairie. Purkayastha et al. (2006) reported by variability morphology, in physiology, genetics, pathogenicity and so forth is imperative for the fungus to have better adaptation in response to diversified environmental conditions. It also leads to host plant resistance, development of resistant varieties of different crops against disease and implementation of new disease controlling strategies. Purkayastha et al. (2004), also found relationship between morphological variations and pathogenicity. Mihail and Taylor (1995) suggested that, due to heterogenic nature of М. phaseolina. categorization into distinct subgroups based upon pathogenicity and morphology could not take place.

Acknowledgement

Thank full to Department of Plant Pathology, JNKVV Jabalpur M.P providing laboratory facilities during my research work.

REFERENCES

- Dhingra, O.D., & Sinclair, J.B. (1977). An Annotated Bibliography of *Macrophomina phaseoli* ,Universidade Federal de Viçosa, Minas Gerais, Viçosa, Brazil, 1905– 1975.
- Manici L.M., Cerato C., & Caputo F. (1992).
 Pathogenic and biologic variability of *Macrophomina phaseolina* (Tassi.)
 Goid isolates in different areas of sunflower cultivation in Italy. p. 779–784. In: Proc. 1992 Sunflower Conference Italy, 1720 pp
- Meena S., Sharma R.C., Sujay, R., Poonam Y., Lokendra S., & Ram D. (2006).
 Genetic variability in *Macrophomina phaseolina* incident of charcoal rots of maize in India. *Indian Phytopathol.* 59(4), 453–459.
- Mihail, J.D., & Taylor, S.J. (1995). Interpreting variability among isolates of *Macrophomina phaseolina* in pathogenicity, pycnidium production and chlorate utilization. *Can. J. Bot.*, 73, 1596–1603.
- Monga D., Rathore S.S., Mayee C.D., & Sharma T.R. (2004). Differentiation of isolates of cotton root pathogens *Rhizoctonia solani* and *Rhizoctonia bataticola* using pathogenicity and RAPD markers. J. Plant Biochem. Biotechnol. 13(1), 135–139.
- Ndiaye, M., Termorshuizen, A.J., & van Bruggen, A.H.C. (2010). Effects of compost amendment and the biocontrol agent *Clonostachys rosea* on the development of charcoal rot (Macrophomina phaseolina) on cowpea. *Journal of Plant Pathology* 92, 173–180
- Nene, Y. L., Kannaiyan, J., & Reddy, M. V. (1981). Pigeonpea disease resistance screening technique. Information Bull.

Ind. J. Pure App. Biosci. (2019) 7(5), 279-286

ISSN: 2582 – 2845

- Kumar et al. No. 9. Patancheru 502 324, Andhra Pradesh, India, International Crop Research Institute for the Semi-Arid Tropics, pp. 14.
- Prameela, T., & Singh, R.H. (1998). Cultural variation of Macrophomina phaseolina isolates collected from *Vigna mungo*. *Indian Phytopathol*. 51(1), 292–293.
- Purkayastha, S., Kaur, B., Dilbaghi, N., & Chaudhury, A. (2004). Cultural and pathogenic variation in the charcoal rot pathogen from cluster bean. *Ann. Agric. Biol. Res.*, 9, 217–22.
- Purkayastha, S., Kaur, N. Dilbaghi & Chaudhury, A. (2006). Characterization of *Macrophomina phaseolina*, the charcoal rot pathogen of cluster bean, using conventional techniques and PCR based molecular markers. *Plant Patho l.*, 55, 106–116.

- Saleh, A.A., Ahmed, H.U., Todd, T.C., Travers, S.E., Zeller, K.A., Leslie, J.F., & Garrett, K.A. (2010). Relatedness of *Macrophomina phaseolina* isolates from tall grass prairie, maize, soybean and sorghum. *Mol. Ecol.* 19, 79-91.
- Wrather J.A., Anderson, T.R., Arsyad, D.M., Gai, J., Ploper, L.D., Porta-Puglia, A., Ram, H.H., & Yorinori, J.T. (1997).
 Soybean disease loss estimates for the top 10 soybean producing countries in 1994. Plant Disease *81*, 107–110.
- Wrather J.A., Anderson, T.R., Arsyad, D.M., Tan, Y., Ploper, L.D., Porta-Puglia, A., Ram, H.H., & Yorinori, J.T. (2001). Soybean disease loss estimates for the top 10 soybean producing countries in 1998. *Canadian Journal* of *Plant Pathology 23*, 115–221.